Dendrogram Based Algorithm for Dominated Graph Flooding
نویسندگان
چکیده
In this paper, we are concerned with the problem of flooding undirected weighted graphs under ceiling constraints. We provide a new algorithm based on a hierarchical structure called dendrogram, which offers the significant advantage that it can be used for multiple flooding with various scenarios of the ceiling values. In addition, when exploring the graph through its dendrogram structure in order to calculate the flooding levels, independent subdendrograms are generated, thus offering a natural way for parallel processing. We provide an efficient implementation of our algorithm through suitable data structures and optimal organisation of the computations. Experimental results show that our algorithm outperforms well established classical algorithms, and reveal that the cost of building the dendrogram highly predominates over the total running time, thus validating both the efficiency and the hallmark of our method. Moreover, we exploit the potential parallelism exposed by the flooding procedure to design a multi-thread implementation. As the underlying parallelism is created on the fly, we use a queue to store the list of the sub-dendrograms to be explored, and then use a dynamic round-robin scheduling to assign them to the participating threads. This yields a load balanced and scalable process as shown by additional benchmark results. Our program runs in few seconds on an ordinary computer to flood graphs with more that 20 millions of nodes.
منابع مشابه
A method for identifying software components based on Non-dominated Sorting Genetic Algorithm
Identifying the appropriate software components in the software design phase is a vital task in the field of software engineering and is considered as an important way to increase the software maintenance capability. Nowadays, many methods for identifying components such as graph partitioning and clustering are presented, but most of these methods are based on expert opinion and have poor accur...
متن کاملOptimal Distribution System Reconfiguration Using Non-dominated Sorting Genetic Algorithm (NSGA-II)
In this paper, a Non-dominated Sorting Genetic Algorithm-II (NSGA-II) based approach is presented for distribution system reconfiguration. In contrast to the conventional GA based methods, the proposed approach does not require weighting factors for conversion of multi-objective function into an equivalent single objective function. In order to illustrate the performance of the proposed method,...
متن کاملDendrogram/Regionalization of U. S. Counties Based upon Migration Flows
Abstract We have obtained a ”hierarchical regionalization” of 3,107 county-level units of the United States based upon 1995-2000 intercounty migration flows. The methodology employed was the two-stage (double-standardization and strong component [directed graph] hierarchical clustering) algorithm described in the 2009 PNAS letter arXiv:0904.4863. Various features (e. g., cosmopolitan vs. provin...
متن کاملA knowledge-based NSGA-II approach for scheduling in virtual manufacturing cells
This paper considers the job scheduling problem in virtual manufacturing cells (VMCs) with the goal of minimizing two objectives namely, makespan and total travelling distance. To solve this problem two algorithms are proposed: traditional non-dominated sorting genetic algorithm (NSGA-II) and knowledge-based non-dominated sorting genetic algorithm (KBNSGA-II). The difference between these algor...
متن کاملP-quasi Complete Linkage Analysis for Gene-Expression Data
In order to find the function of genes from geneexpression profiles, the hierarchical clustering has been used generally. But this method has problems, for example a dendrogram tends to change by data dependence, therefore it is easy to be influenced of the error of an experimental noise. To cope with the problems, we propose another type of clustering. We formulate the problem of the clusterin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014